

花青素还原酶(anthocyanidin reductase, ANR)试剂盒说明书

(货号: BP10101W 微板法 96样 有效期: 3个月)

一、指标介绍:

花青素还原酶(ANR)参与调控花青素的含量水平以及原花青素的形成,是原花青素单体生物合成过程中关键酶之一,在花青素积累过程中具有重要的调节作用。

花青素还原酶 (ANR) 在 NADPH 存在下使飞燕草色素转变为表没食子儿茶素和 NADP+, 通过检测 反应体系在 340nm 处的吸光值下降速率即可得出花青素还原酶 (ANR) 活性大小。

二、试剂盒组成和配制:

试剂组分	试剂规格	存放温度	注意事项
提取液	液体 110mL×1 瓶	4℃保存	
试剂一	粉剂 1 支	-20℃保存	 临用前 8000g 4°C 离心 2mim 使试剂落入 管底; 加入 1.2mL 蒸馏水溶解备用; 保存周期与试剂盒有效期相同。
试剂二	粉剂 2 支	-20℃保存	每支: 1. 临用前 8000g 4° C 离心 2mim 使试剂落入管底; 2. 加入 0.6mL 蒸馏水溶解备用。用不完的试剂分装后-20℃保存,禁止反复冻融,三天内用完。
试剂三	液体 30mL×1 瓶	4℃保存	
试剂四	粉剂 1 支	-20℃避光保存	 临用前 8000g 4° C 离心 2mim 使试剂落入 管底; 加入 1.1mL 乙醇溶解备用,用不完的试剂分 装后-20℃避光保存,禁止反复冻融

三、实验器材:

研钵(匀浆机)、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、 96 孔板、离心管、酶标仪、**无水乙醇**、蒸馏水(去离子水、超纯水均可)。

四、指标测定:

建议先选取 1-3 个差异大的样本(例如不同类型或分组)进行预实验,熟悉操作流程,根据预实验结果确定或调整样本浓度,以防造成样本或试剂不必要的浪费!

1、样本提取:

① 组织样本:

称取约 0.1g 组织样本,加入 1mL 提取液,冰浴匀浆,12000rpm,4℃离心 10min,取上清置冰上 待测。

- 【注】: 若增加样本量,可按照组织质量(g):提取液体积(mL)为1:5~10的比例进行提取。
 - ② 液体样本: 若液体澄清可直接检测; 若浑浊则 12000rpm, 4°C离心 10min, 取上清置冰上待测。

2、检测步骤:

- ① 酶标仪预热 30min 以上, 调节波长至 340nm。
- ② 所有试剂解冻至室温(25℃)。
- ③ 在96孔板中依次加入:

试剂组分(μL)	测定管

网址: www.bpelisa.com

样本	20			
试剂一	10			
试剂二	10			
试剂三	150			
340nm, 室温 (25°C) 孵育 5min				
试剂四	10			
充分混匀 立即于 340nm 处读取吸光值 Δ1 后于 40℃ 温育 20π				

充分混匀, 立即于 340nm 处读取吸光值 A1, 后于 40℃温育 20min 后, 再读取吸光值 A2, △A=A1-A2。

- 【注】1. 若 ΔA 的值在零附近徘徊,可增加样本加样量 V1(如增至 $40\mu L$,则试剂三减少至 $130\mu L$),则改变后的 V1 需代入计算公式重新计算。
 - 2. 若起始值 A1 太大如超过 2(如颜色较深的组织样本,一般色素较高,则起始值相对会偏高),可以适当减少样本加样量 V1(如减至 $10\mu L$),则改变后的 V1 需代入计算公式重新计算。
 - 3. 若△A 的值大于 0.2,则需减少反应时间(如 40°C温育 20min 减少至 10min),则改变后的反应时间 T 需代入计算公式重新计算。

五、结果计算:

1、按样本蛋白浓度计算

酶活定义: 40℃条件下, 每毫克组织蛋白每分钟氧化 1nmolNADPH 定义为一个酶活单位。

ANR 活性 (nmol/min/mg prot) = $[\Delta A \times V2 \div (\epsilon \times d) \times 10^9] \div (V1 \times Cpr) \div T$

= $160.8 \times \Delta A \div Cpr$

2、按样本鲜重计算

酶活定义: 40℃条件下, 每克组织每分钟氧化 1nmolNADPH 定义为一个酶活单位。

ANR 活性 (nmol/min/g 鲜重) = $[\Delta A \times V2 \div (\epsilon \times d) \times 10^9] \div (W \times V1 \div V) \div T$

 $=160.8 \times \Delta A \div W$

3、按液体体积计算

酶活定义: 40℃条件下, 每毫升液体每分钟氧化 1nmolNADPH 定义为一个酶活单位。

ANR 活性 (nmol/min/mL) = $[\Delta A \times V2 \div (\epsilon \times d) \times 10^9] \div V1 \div T$

 $=160.8\times\Delta A$

V---加入提取液体积, 1 mL;

V1---加入样本体积, 0.02mL;

V2---反应体系总体积, 2×10⁻⁴ L;

d---96 孔板光径, 0.5cm;

ε---NADPH 摩尔消光系数, 6.22×10³ L/mol/cm;

W---样本质量,g;

T---反应时间, 20min;

Cpr---蛋白浓度 (mg/mL) , 建议使用本公司的 BCA 蛋白含量测定试剂盒。

网址: www.bpelisa.com